Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Annu Rev Med ; 73: 1-16, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-2268653

ABSTRACT

Prophylactic and therapeutic drugs are urgently needed to combat coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over the past year, SARS-CoV-2 neutralizing antibodies have been developed for preventive or therapeutic uses. While neutralizing antibodies target the spike protein, their neutralization potency and breadth vary according to recognition epitopes. Several potent SARS-CoV-2 antibodies have shown degrees of success in preclinical or clinical trials, and the US Food and Drug Administration has issued emergency use authorization for two neutralizing antibody cocktails.Nevertheless, antibody therapy for SARS-CoV-2 still faces potential challenges, including emerging viral variants of concern that have antibody-escape mutations and the potential for antibody-mediated enhancement of infection or inflammation. This review summarizes representative SARS-CoV-2 neutralizing antibodies that have been reported and discusses prospects and challenges for the development of the next generation of COVID-19 preventive or therapeutic antibodies.


Subject(s)
COVID-19 , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Cell Rep ; 42(2): 112044, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2209948

ABSTRACT

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.

3.
iScience ; 26(1): 105855, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2165426

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has triggered myriad efforts to understand the structure and dynamics of this complex pathogen. The spike glycoprotein of SARS-CoV-2 is a significant target for immunogens as it is the means by which the virus enters human cells, while simultaneously sporting mutations responsible for immune escape. These functional and escape processes are regulated by complex molecular-level interactions. Our study presents quantitative insights on domain and residue contributions to allosteric communication, immune evasion, and local- and global-level control of functions through the derivation of a weighted graph representation from all-atom MD simulations. Focusing on the ancestral form and the D614G-variant, we provide evidence of the utility of our approach by guiding the selection of a mutation that alters the spike's stability. Taken together, the network approach serves as a valuable tool to evaluate communication "hot-spots" in proteins to guide design of stable immunogens.

4.
Cell Rep ; 39(13): 111009, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1944463

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sub-lineage has gained in proportion relative to BA.1. Because spike (S) protein variations may underlie differences in their pathobiology, here we determine cryoelectron microscopy (cryo-EM) structures of the BA.2 S ectodomain and compare these with previously determined BA.1 S structures. BA.2 receptor-binding domain (RBD) mutations induce remodeling of the RBD structure, resulting in tighter packing and improved thermostability. Interprotomer RBD interactions are enhanced in the closed (or 3-RBD-down) BA.2 S, while the fusion peptide is less accessible to antibodies than in BA.1. Binding and pseudovirus neutralization assays reveal extensive immune evasion while defining epitopes of two outer RBD face-binding antibodies, DH1044 and DH1193, that neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the closed state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant and show differences in key functional regions in the BA.1 and BA.2 S proteins.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cryoelectron Microscopy , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus
5.
STAR Protoc ; 3(3): 101603, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1937316

ABSTRACT

SARS-CoV-2 spike (S) protein ectodomain purification can be challenging, with engineered and natural variations often resulting in lower yields. Here, we present a detailed transfection and purification protocol for the SARS-CoV-2 S ectodomain. We describe how to trace protein yields during purification using highly sensitive and characteristic changes in S ectodomain intrinsic fluorescence upon thermal denaturation. Additionally, we detail several optimized aspects of the purification including timing and temperature. This protocol facilitates consistent, high-quality preparations of the SARS-CoV-2 S ectodomain. For complete details on the use and execution of this protocol, please refer to Stalls et al. (2022), Gobeil et al. (2022), Edwards et al. (2021), and Henderson et al. (2020).


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mammals/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Transfection
6.
Mol Cell ; 82(11): 2050-2068.e6, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1937002

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor-binding domain (RBD) and neutralizing antibody epitope presentation, affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
7.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750472

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 A resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design. Highlights: Fab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 A resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.

8.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750460

ABSTRACT

The glycan shield of the beta-coronavirus (ß-CoV) Spike (S) glycoprotein provides protection from host immune responses, acting as a steric block to potentially neutralizing antibody responses. The conformationally dynamic S-protein is the primary immunogenic target of vaccine design owing to its role in host-cell fusion, displaying multiple receptor binding domain (RBD) 'up' and 'down' state configurations. Here, we investigated the potential for RBD adjacent, N-terminal domain (NTD) glycans to influence the conformational equilibrium of these RBD states. Using a combination of antigenic screens and high-resolution cryo-EM structure determination, we show that an N-glycan deletion at position 234 results in a dramatically reduced population of the 'up' state RBD position. Conversely, glycan deletion at position N165 results in a discernable increase in 'up' state RBDs. This indicates the glycan shield acts not only as a passive hinderance to antibody meditated immunity but also as a conformational control element. Together, our results demonstrate this highly dynamic conformational machine is responsive to glycan modification with implications in viral escape and vaccine design.

10.
Science ; 373(6555)2021 08 06.
Article in English | MEDLINE | ID: covidwho-1282050

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with multiple spike mutations enable increased transmission and antibody resistance. We combined cryo-electron microscopy (cryo-EM), binding, and computational analyses to study variant spikes, including one that was involved in transmission between minks and humans, and others that originated and spread in human populations. All variants showed increased angiotensin-converting enzyme 2 (ACE2) receptor binding and increased propensity for receptor binding domain (RBD)-up states. While adaptation to mink resulted in spike destabilization, the B.1.1.7 (UK) spike balanced stabilizing and destabilizing mutations. A local destabilizing effect of the RBD E484K mutation was implicated in resistance of the B.1.1.28/P.1 (Brazil) and B.1.351 (South Africa) variants to neutralizing antibodies. Our studies revealed allosteric effects of mutations and mechanistic differences that drive either interspecies transmission or escape from antibody neutralization.


Subject(s)
SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/transmission , COVID-19/veterinary , COVID-19/virology , Cryoelectron Microscopy , Host Adaptation , Humans , Immune Evasion , Mink/virology , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Subunits/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
11.
Cell Rep Med ; 2(6): 100313, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1240648

ABSTRACT

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Immunoglobulin Fc Fragments/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Cross Reactions/immunology , Epitope Mapping , Female , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Mice, Inbred BALB C , Phagocytosis , Protein Subunits/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Cell Rep ; 35(8): 109179, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1230394

ABSTRACT

Understanding and eliciting protective immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an urgent priority. To facilitate these objectives, we profile the repertoire of human leukocyte antigen class II (HLA-II)-bound peptides presented by HLA-DR diverse monocyte-derived dendritic cells pulsed with SARS-CoV-2 spike (S) protein. We identify 209 unique HLA-II-bound peptide sequences, many forming nested sets, which map to sites throughout S including glycosylated regions. Comparison of the glycosylation profile of the S protein to that of the HLA-II-bound S peptides reveals substantial trimming of glycan residues on the latter, likely induced during antigen processing. Our data also highlight the receptor-binding motif in S1 as a HLA-DR-binding peptide-rich region and identify S2-derived peptides with potential for targeting by cross-protective vaccine-elicited responses. Results from this study will aid analysis of CD4+ T cell responses in infected individuals and vaccine recipients and have application in next-generation vaccine design.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Peptides/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Antigen Presentation , COVID-19/virology , Epitope Mapping , Epitopes, T-Lymphocyte/immunology , Glycosylation , Humans , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , T-Lymphocytes/immunology
13.
Nature ; 594(7864): 553-559, 2021 06.
Article in English | MEDLINE | ID: covidwho-1221200

ABSTRACT

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/prevention & control , Common Cold/prevention & control , Cross Reactions/immunology , Pandemics , Viral Vaccines/immunology , Adjuvants, Immunologic , Administration, Intranasal , Animals , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Common Cold/immunology , Common Cold/virology , Disease Models, Animal , Female , Humans , Macaca/immunology , Male , Models, Molecular , Nanoparticles/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Trachea , Vaccination
14.
Nat Struct Mol Biol ; 28(2): 128-131, 2021 02.
Article in English | MEDLINE | ID: covidwho-1010060

ABSTRACT

The SARS-CoV-2 spike (S) protein, a primary target for COVID-19 vaccine development, presents its receptor binding domain in two conformations, the receptor-accessible 'up' or receptor-inaccessible 'down' states. Here we report that the commonly used stabilized S ectodomain construct '2P' is sensitive to cold temperatures, and this cold sensitivity is abrogated in a 'down' state-stabilized ectodomain. Our findings will impact structural, functional and vaccine studies that use the SARS-CoV-2 S ectodomain.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , Cold Temperature , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Protein Denaturation , Protein Domains , Protein Stability , Spike Glycoprotein, Coronavirus/ultrastructure , Surface Plasmon Resonance
15.
Cell Rep ; 34(2): 108630, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-987231

ABSTRACT

The severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein is the target of vaccine design efforts to end the coronavirus disease 2019 (COVID-19) pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic and are now the dominant form worldwide. Here, we explore S conformational changes and the effects of the D614G mutation on a soluble S ectodomain construct. Cryoelectron microscopy (cryo-EM) structures reveal altered receptor binding domain (RBD) disposition; antigenicity and proteolysis experiments reveal structural changes and enhanced furin cleavage efficiency of the G614 variant. Furthermore, furin cleavage alters the up/down ratio of the RBDs in the G614 S ectodomain, demonstrating an allosteric effect on RBD positioning triggered by changes in the SD2 region, which harbors residue 614 and the furin cleavage site. Our results elucidate SARS-CoV-2 S conformational landscape and allostery and have implications for vaccine design.


Subject(s)
Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Immunogenicity, Vaccine , Molecular Dynamics Simulation , Mutation , Protein Domains , Protein Stability , Protein Structure, Quaternary , Protein Subunits/metabolism , Proteolysis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
16.
Cell Host Microbe ; 29(1): 23-31.e4, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-956078

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein acquired a D614G mutation early in the pandemic that confers greater infectivity and is now the globally dominant form. To determine whether D614G might also mediate neutralization escape that could compromise vaccine efficacy, sera from spike-immunized mice, nonhuman primates, and humans were evaluated for neutralization of pseudoviruses bearing either D614 or G614 spike. In all cases, the G614 pseudovirus was moderately more susceptible to neutralization. The G614 pseudovirus also was more susceptible to neutralization by receptor-binding domain (RBD) monoclonal antibodies and convalescent sera from people infected with either form of the virus. Negative stain electron microscopy revealed a higher percentage of the 1-RBD "up" conformation in the G614 spike, suggesting increased epitope exposure as a mechanism of enhanced vulnerability to neutralization. Based on these findings, the D614G mutation is not expected to be an obstacle for current vaccine development.


Subject(s)
COVID-19/therapy , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Animals , Antibodies, Monoclonal/immunology , Binding Sites , COVID-19/immunology , COVID-19 Vaccines/immunology , Female , HEK293 Cells , Humans , Immunization, Passive/methods , Macaca mulatta , Male , Mice, Inbred BALB C , Middle Aged , Neutralization Tests , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Young Adult , COVID-19 Serotherapy
17.
Nat Struct Mol Biol ; 27(10): 925-933, 2020 10.
Article in English | MEDLINE | ID: covidwho-662441

ABSTRACT

The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available ß-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different ß-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , Cryoelectron Microscopy , Microscopy, Electron/methods , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Subunits/chemistry , Spike Glycoprotein, Coronavirus/genetics
18.
bioRxiv ; 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-636940

ABSTRACT

The glycan shield of the beta-coronavirus (ß-CoV) Spike (S) glycoprotein provides protection from host immune responses, acting as a steric block to potentially neutralizing antibody responses. The conformationally dynamic S-protein is the primary immunogenic target of vaccine design owing to its role in host-cell fusion, displaying multiple receptor binding domain (RBD) 'up' and 'down' state configurations. Here, we investigated the potential for RBD adjacent, N-terminal domain (NTD) glycans to influence the conformational equilibrium of these RBD states. Using a combination of antigenic screens and high-resolution cryo-EM structure determination, we show that an N-glycan deletion at position 234 results in a dramatically reduced population of the 'up' state RBD position. Conversely, glycan deletion at position N165 results in a discernable increase in 'up' state RBDs. This indicates the glycan shield acts not only as a passive hinderance to antibody meditated immunity but also as a conformational control element. Together, our results demonstrate this highly dynamic conformational machine is responsive to glycan modification with implications in viral escape and vaccine design.

19.
bioRxiv ; 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-636939

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 Å resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design. HIGHLIGHTS: Fab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 Å resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.

20.
Cell ; 181(7): 1458-1463, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-382065

ABSTRACT

The SARS-CoV-2 pandemic that causes COVID-19 respiratory syndrome has caused global public health and economic crises, necessitating rapid development of vaccines and therapeutic countermeasures. The world-wide response to the COVID-19 pandemic has been unprecedented with government, academic, and private partnerships working together to rapidly develop vaccine and antibody countermeasures. Many of the technologies being used are derived from prior government-academic partnerships for response to other emerging infections.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Betacoronavirus/physiology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Humans , Intersectoral Collaboration , Pneumonia, Viral/immunology , SARS-CoV-2 , Viral Vaccines/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL